Wavelet based spectral finite element for analysis of coupled wave propagation in higher order composite beams
نویسندگان
چکیده
In this paper, a spectrally formulated wavelet finite element is developed and is used to study coupled wave propagation in higher order composite beams. The beam element has four degrees of freedom at each node, namely axial and transverse displacements, shear and contraction. The formulation is used to perform both frequency and time domain analysis. The formulation is similar to conventional FFT based Spectral Finite Element (FSFE) except that, here Daubechies wavelet basis is used for approximation in time to reduce the governing PDE to a set of ODEs. The localized nature of the compactly supported Daubechies wavelet basis helps to circumvent several problems associated with FSFE due to the required assumption of periodicity, particularly for time domain analysis. However, in Wavelet based Spectral Finite Element (WSFE), a constraint on the time sampling rate has to be placed to avoid the introduction of spurious dispersion in the analysis. Numerical experiments are performed to study spectrum and dispersion relation. In addition, the wave propagation in finite length structures due to broad band impulse loading is studied to bring out the higher order effects. Simultaneous existence of various propagating modes are graphically captured using modulated sinusoidal pulse excitation. In all the cases comparison are provided with FSFE. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
hp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملFinite Element Instability Analysis of the Steel Joist of Continuous Composite Beams with Flexible Shear Connectors
Composite steel/concrete beams may buckle in hogging bending regions. As the top flange of I-beam in that arrangement is restricted from any translational deformation and twist, the web will distort during buckling presenting a phenomenon often described as restricted distortional buckling. There are limited studies available in the literature of restricted distortional buckling of composite st...
متن کاملیافتن آسیبدیدگی در تیر و میله بهروش انتشار موج با استفاده از المانهای محدود طیفی
In this paper, wave propagation method was applied to detect damage of structures. Spectral Finite Element Method (SFEM) was used to analyze wave propagation in structures. Two types of structures i.e. rod and Euler-Bernoulli beam were modelled using spectral elements. The advantage of spectral finite element over conventional Finite Element Method (FEM), in wave propagation problems, is its...
متن کامل